
### **Outline**

- Heavy flavor production at the LHC
- The ALICE detector
- ALICE heavy flavor measurements
  - charm reconstruction via hadronic decays
  - beauty detection in semileptonic modes
- Summary & outlook

All the material presented hereafter is published in the ALICE "Physics Performance Report", J. Phys. G30 1517-1763 & CERN/LHCC 2005-030

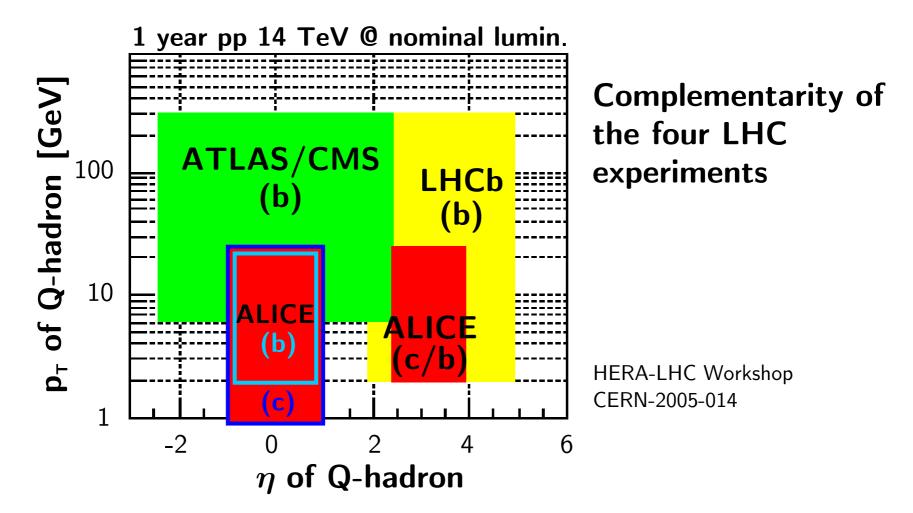
### Heavy flavor production at the LHC Introduction

- What for?
  - heavy flavor production in hadron collisions provides a rich QCD phenomenology
    - pp test reliability of pertubative calculations
    - **?** pA assess initial state effects
    - **?** AA probe the high colour-density medium
- LHC's novelties
  - copious production of both c & b quarks
  - large inelastic background
    - messy environment with large combinatorics  $\propto (dN_{ch}/dy)^2$  with  $dN_{ch}/dy = 6000$  in central Pb-Pb!
- ALICE's plus points (see H-A Gustaffson's talk)
  - muti-purpose several heavy flavor measurements
     within the same experiment
  - precise tracking resolve D's & B's decay vertices
     & vertexing
    - PID  $\pi/K$  separation



### Heavy flavor production at the LHC

#### Hard QCD probes

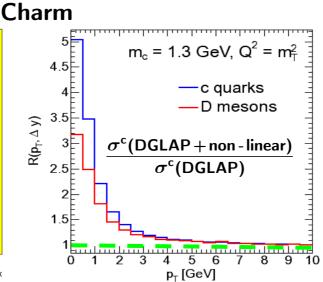

- Sensitive probes of the collision dynamics
  - early creation time  $\sim 1/m_Q$  ( $\sim 0.1$  fm/c  $\ll au_{QGP} \sim 5 \div 10$  fm/c) & long lifetime
    - I undergo the whole collision history
- Tomographic probes
  - radiative parton energy loss is both color charge & mass dependent
     Phys. Rev. D71 (2005) 054027
    - significantly larger energy loss is expected for light q & g w.r.t b quarks at the LHC

0000

- need for a clean "calibration"
  - pp & pA experiments provide a compulsory benchmark
- Heavy quark p<sub>T</sub> distribution sensitive to many competing nuclear effects
  - low- $p_{\tau}$  (< 6 GeV/c at LHC) region sensitive to non-perturbative effects (flow, quark coalescence, gluon shadowing, CGC state...)
  - high-p<sub>T</sub> region sensitive to jet quenching
- Complementary of quarkonia production

### Heavy flavor production at the LHC

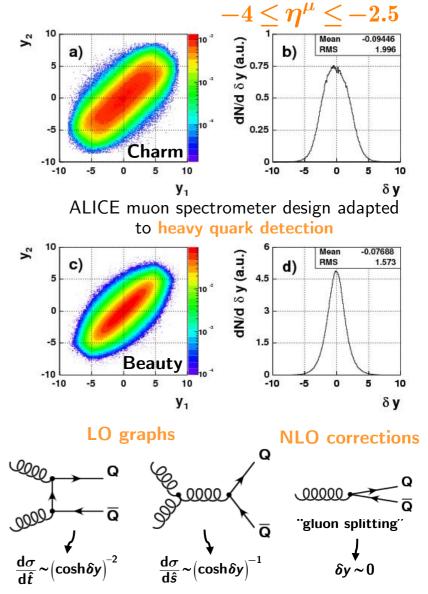
#### pp acceptances




ALICE has acceptance down to very low  $p_{T}$ !

### Heavy flavor production at the LHC A novel range of accessible $\boldsymbol{x}$

- ALICE probes a continuous range of x as low as about  $10^{-5}$  w/ HQs at low  $p_T$  and/or forward y
  - explore QCD in the new regime of "small" x & "large"  $Q^2$  where a breakdown of the standard collinear factorization approach is expected
    - deep nuclear gluon shadowing at high rapidity in pA
    - **!** gluon saturation at  $Q_s^2$  (5.5 TeV, Pb)  $\sim 10 \div 20 \text{ GeV}^2$
    - non-linear terms in the gluon evolution
      - possible low-p<sub>T</sub> charm enhancement Phys. Lett. B582 (2004) 157


## 



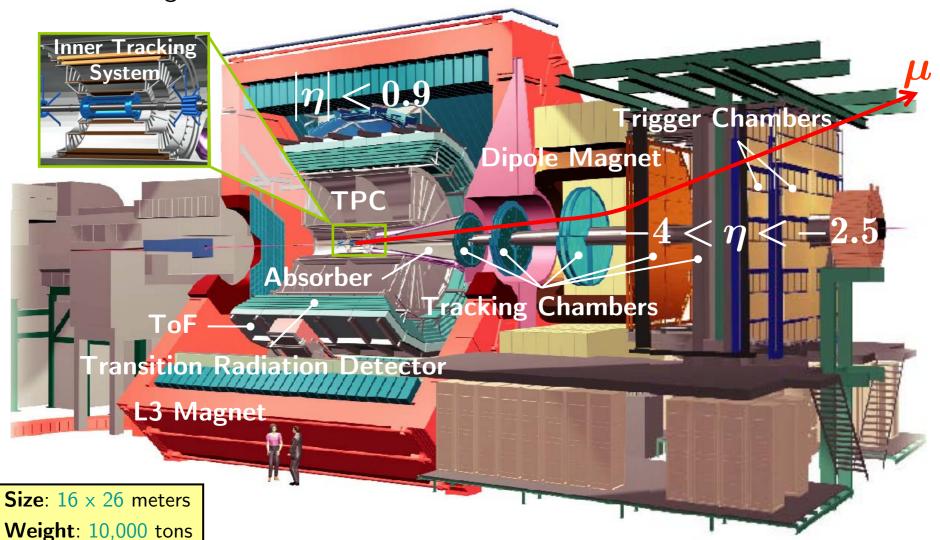


### Heavy flavor production at the LHC Outbreak of large higher order corrections

- LO processes result in topologies where the Q and the  $\bar{Q}$  quarks are produced back-to-back and necessarily have similar  $p_{\tau}$
- Higher order contributions
  - can produce much more complicated topologies
  - become dominant at LHC energies,  $K = \sigma_{\rm NLO}/\sigma_{\rm LO} = 1.4 \div 3.2$  for b production [hep-ph/0311048]
  - in the following, heavy quarks have been generated using PYTHIA (\*), tuned to reproduce kinematic distributions given by NLO pQCD [hep-ph/0311225]
    - (\*) NLO pertubative processes approximated in the PS approach by LO hard scattering (QCD  $2 \rightarrow 2$  processes) plus initial and final-state cascades

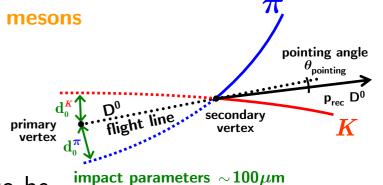


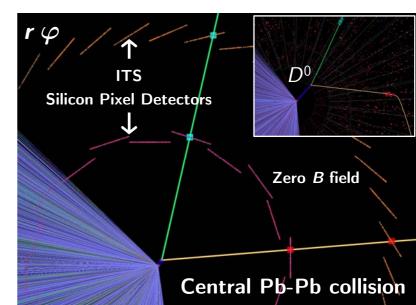
## Heavy flavor production at the LHC The ALICE baseline


#### Unpreceding large cross sections!

|                                     | PbPb (0-5<br>5.5 | 5% centr.)<br>TeV | pp<br>14 TeV |        |  |
|-------------------------------------|------------------|-------------------|--------------|--------|--|
|                                     | charm            | beauty            | charm        | beauty |  |
| $\sigma_{Qar{Q}}(NN) \ [mb]^{-(*)}$ | 6.64             | 0.21              | 11.2         | 0.51   |  |
| EKS98 shadowing                     | 0.65             | 0.86              |              |        |  |
| $N_{Qar{Q}}$ per collision          | 115              | 4.56              | 0.16         | 0.0072 |  |

(\*) NLO in pQCD calculations from M. Mangano, P. Nason, and G. Ridolfi, Nucl. Phys. B 273 (1992) 295 Theoretical uncertainty of a factor 2-3


### The ALICE detector


Only dedicated HI experiment at the LHC with a large suite of detectors optimized for high efficiency tracking and particle identification across large range of momenta from below 100 MeV to above 100 GeV



# Direct charm reconstruction in ALICE The $D^0{ o}K^-\pi^+$ "golden" mode

- Direct measurement of the charmed meson  $p_T$  distribution
  - measure the nuclear modification factor  $R_{\Delta\Delta}$  of D mesons
- Very challenging in a heavy-ion environment
  - $-S/B\sim 10^{-6}$  in  $M_{D^0}\pm 3~\sigma$  before selection
  - need for a drastic selection procedure to reduce the background by 6-7 orders of magnitude!
- Secondary production from *b* hadron decays to be subtracted from direct production
- Detection strategy
  - exploit the long c lifetime ( $c\tau$  = 124  $\mu$ m)
    - events containing hadronic decays of charmed hadron are selected by requiring
      - two opposite-sign tracks displaced from the primary vertex i.e. w/ large impact parameters d<sub>0</sub>
  - D $^0$  reconstructed momentum should point to the primary vertex  $( heta_{
    m pointing} pprox 0)$
  - $-\left( \boldsymbol{K,\!\pi} \right)$  invariant mass analysis to extract the D<sup>0</sup> yield





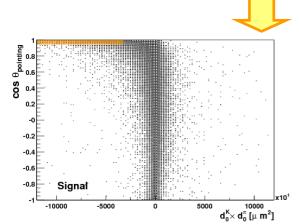
### $D^0{ ightarrow} K^-\pi^+$

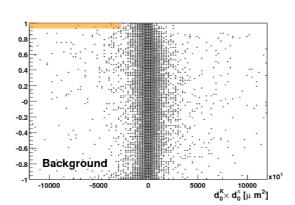
#### D<sup>0</sup> candidate reconstruction

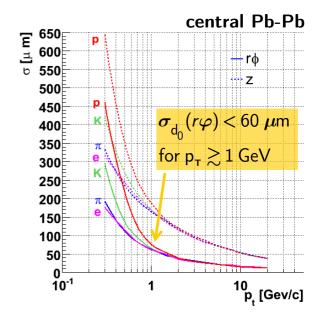
#### Measurement of the track impact parameter

- track reconstruction in ITS + TPC
- d<sub>o</sub> resolution given by ITS SPD layers

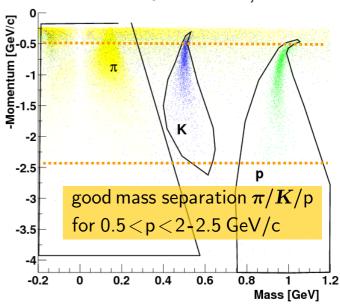


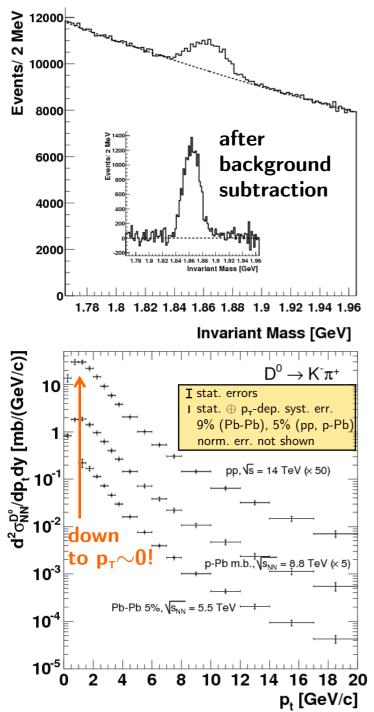

#### PID


TOF tag decay products


#### D<sup>0</sup> candidate selection

 $d_0^K \times d_0^{\pi} < -40,000 \ \mu m^2 \ \& \cos \theta_{point} \ge 0.98$ 



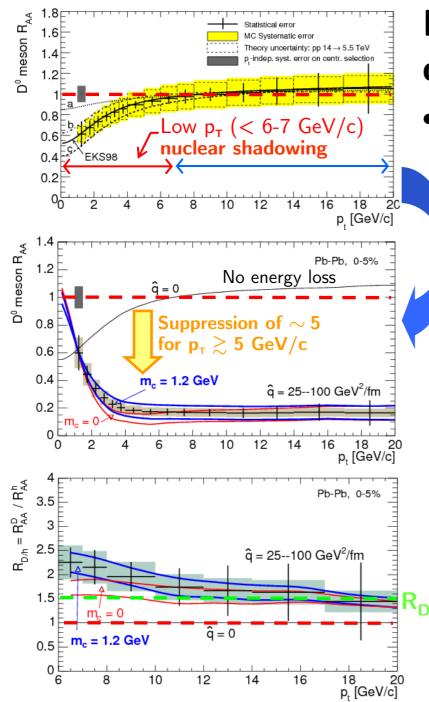








TOF: momentum vs. mass, Pb-Pb






## $D^0{ ightarrow} K^-\pi^+$ The results

|           | S/B              | S/B              | Significance                       |
|-----------|------------------|------------------|------------------------------------|
|           | initial          | final            | $S/(S+B)^{1/2}$                    |
|           | $(M\pm 3\sigma)$ | $(M\pm 1\sigma)$ | $(M\pm 1\sigma)$                   |
| Pb-Pb     | 5 · 10-6         | 10%              | $\sim$ 35                          |
| central   | J • 10 •         | 1070             | (for $10^7$ evts, $\sim\!1$ month) |
| pPb       | 2 · 10-3         | 5%               | $\sim$ 30                          |
| min. bias | 2 · 10 °         | 376              | (for $10^8$ evts, ${\sim}1$ month) |
| рр        | 2 · 10-3         | 10%              | $\sim$ 40                          |
|           |                  | 10/0             | (for $10^9$ evts, $\sim$ 7 months) |

#### Note

w/  $dN_{ch}/dy = 3000$ , S/B larger by  $\times 4$  & significance larger by  $\times 2$ 

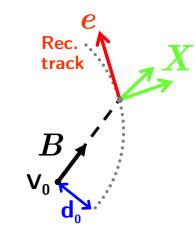


## Perspectives for the study of charm quenching

- The method
  - Comparing D<sup>0</sup> mesons p<sub>T</sub> distributions in pp & AA

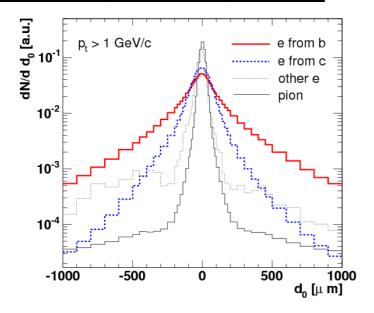
$$R_{AA} = \frac{1}{N_{coll}} \times \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

"High"  $p_T$  (> 6 - 7 GeV/c) here energy loss can be studied only expected effect?

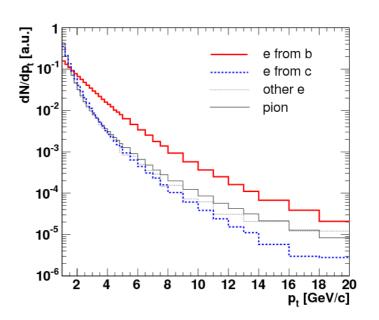

in-medium hadronisation...

- "heavy-to-light" ratio  $R_{D/h}$  $R_{D/h}(p_T) = R_{AA}^D(p_T) / R_{AA}^h(p_T)$ 

Test the color-charge dependence of QCD energy loss

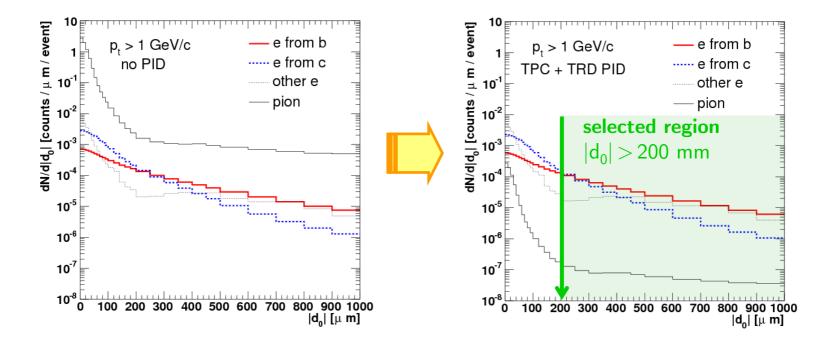

1 year at nominal luminosity  $(10^7 \text{ central Pb-Pb events}, 10^9 \text{ pp events})$ 

## Beauty via single electrons in central Pb-Pb collisions



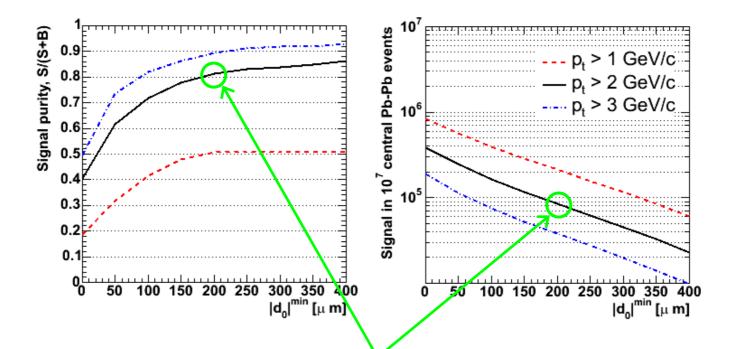

- Main sources of background
  - pions misidentified as electrons
  - charm decay electrons
  - Dalitz decays
  - photon conversions
  - strangeness decays

| e signal | e backg        | $\pi$          |
|----------|----------------|----------------|
| 0.4      | $\sim$ 10 $^3$ | $\sim$ 10 $^4$ |



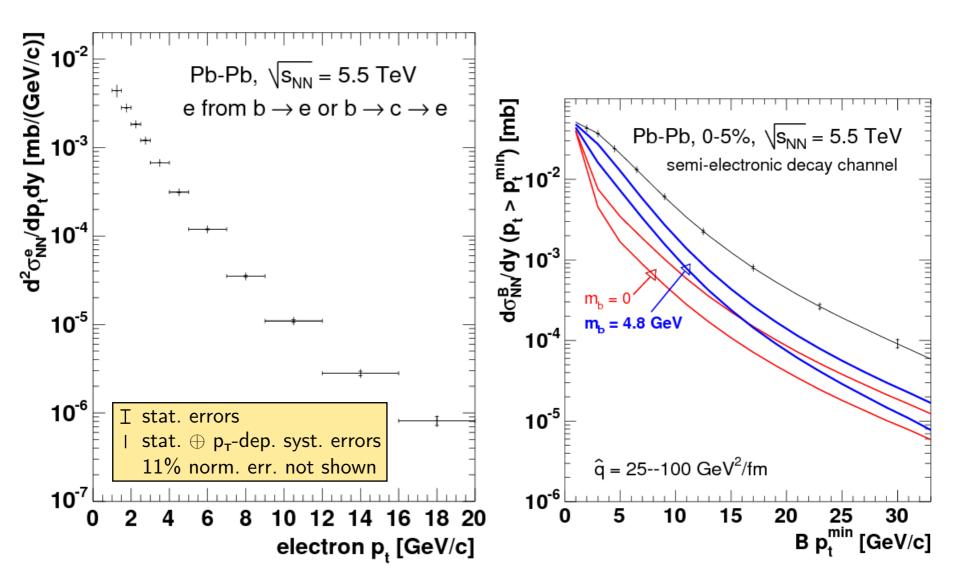

- Detection strategy
  - electron ID in TPC + TRD
  - impact parameter cut-off
    - $m \raisebox{ } B's \ \emph{c} au\sim500\mu m$
  - p<sub>⊤</sub> cut-off
    - **!** large b-quark mass  $\rightarrow$  hard spectrum




# $B \rightarrow e X$ e identification in TPC + TRD

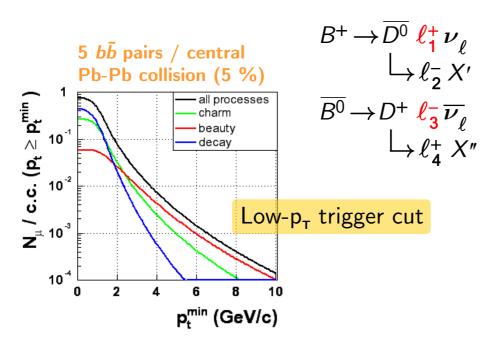
 Charged pion contamination reduced by 4 orders of magnitude after electron ID w/ a combined dE/dx and transition radiation selection




# $B \rightarrow e X$ Purity & statistics

• Signal-to-total ratio & expected statistics in 10<sup>7</sup> central Pb-Pb events




 $p_T > 2 \text{ GeV/c} \& 200 \le |d_0| \le 600 \mu m$ 80,000 electrons from B decays with a 80% purity

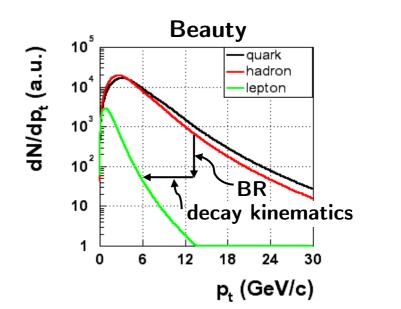
# $B \rightarrow e X$ $p_{T}$ - differential cross sections



### Beauty measurement using muons

 A representative fraction of b-quarks is detected in ALICE through their semileptonic decays

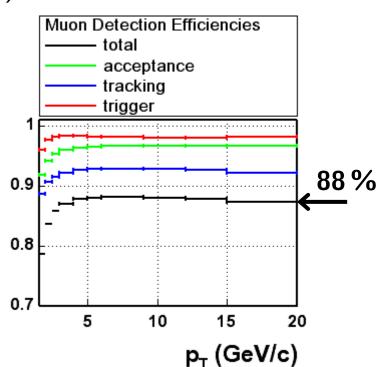



How to enhance b signal

– muon 
$$\mathbf{p_T}$$
 cut-off  $\langle~\mathbf{p_T}^Q~\rangle\sim~\mathbf{m_Q}$  and harder fragmentation

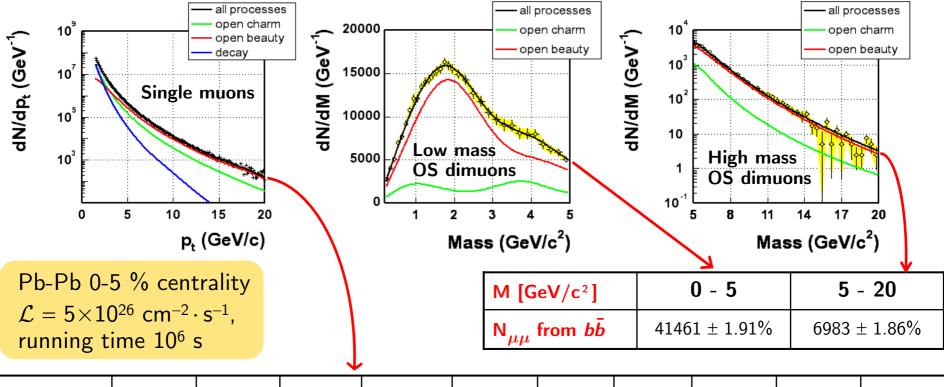
$$B^{+} \rightarrow \overline{D^{0}} \; \ell_{1}^{+} \; \nu_{\ell} \qquad \text{Large BR} \sim 10 \; \%$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$


correlated LS muon pairs from  $b\bar{b}$  decays  $\ref{eq:correlated}$ 

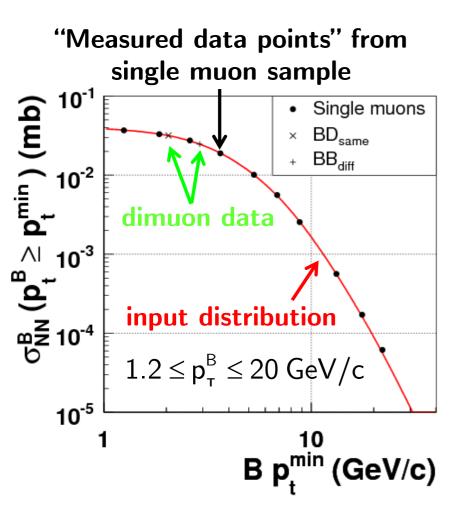


## $B \rightarrow \mu \ X$ Muon detection

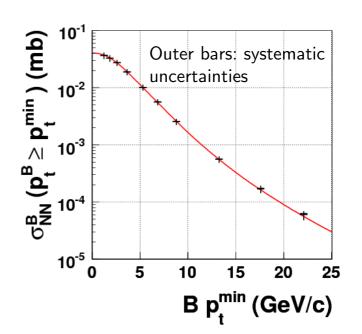

- Muons are identified with a high p resolution  $\sim 1\text{-}2\,\%$  by their ability to punch through more than 15 interaction lengths of materials
- Acceptance A<sub>track</sub> is the fraction of "trackable tracks" (1/2 TC1-3, 3/4 TC4-5, 3-4 MT1-2)

|                              | Ch          | arm          | Beauty      |              |                      |  |
|------------------------------|-------------|--------------|-------------|--------------|----------------------|--|
| %                            | $\mu^{\pm}$ | $\mu^+\mu^-$ | $\mu^{\pm}$ | $\mu^+\mu^-$ | $\mu^{\pm}\mu^{\pm}$ |  |
| $\mathcal{A}_{geom}$         | 13          | 3            | 12          | 5            | 3                    |  |
| $\mathcal{A}_{track}$        | 42          | 19           | <b>75</b>   | 46           | 51                   |  |
| $arepsilon_{track}$          | 27          | 8            | 62          | 29           | 34                   |  |
| $arepsilon_{trigger}^{Low}$  | 13          | 2            | 53          | 17           | 23                   |  |
| $arepsilon_{trigger}^{High}$ | 4           | 0.3          | 29          | 4            | 7                    |  |



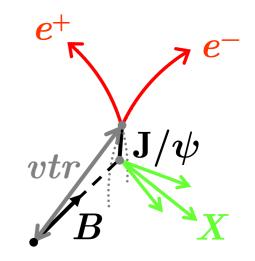

## $B\! o\!\mu\,X$ Muon raw yields

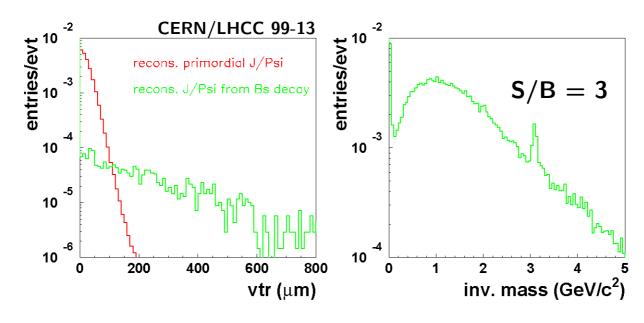
- Uses 3 different data samples
- Fits with fixed shapes from the Monte Carlo & beauty amplitude as the only free parameter




| p <sub>T</sub> [GeV/c]    | 1.5 - 2                                                   | 2 – 2.5                     | 2.5 - 3                 | 3 - 4                 | 4 - 5 | 5 - 6 | 6 - 9                          | 9 - 12 | 12 - 15                 | 15 - 20                   |
|---------------------------|-----------------------------------------------------------|-----------------------------|-------------------------|-----------------------|-------|-------|--------------------------------|--------|-------------------------|---------------------------|
| $N_{\mu}$ from $\emph{b}$ | $\begin{array}{c} 2.2\ 10^{6}\ \pm \\ 0.03\% \end{array}$ | 1.5 10 <sup>6</sup> ± 0.04% | $0.9\ 10^6\ \pm 0.06\%$ | $0.9\ 10^6\pm 0.07\%$ |       |       | 1.2 10 <sup>5</sup><br>± 0.23% |        | $4.7\ 10^3\ \pm 1.26\%$ | $1.8  10^3 \pm \\ 2.06\%$ |

# $B \! o \! \mu \; X$ b- meson inclusive cross section





- Beauty inclusive production cross section measured over a wide p<sub>T</sub> region
- Any deviation from pQCD scaled pp measurement could indicate effects from dense medium!



# Measuring beauty production using secondary $J/\psi$ from b-hadron decays

- $b \rightarrow J/\psi$  (1S) anything BR = 1.16 ± 0.10% (from PDG)
- $N(b \rightarrow J/\psi) / N(prompt J/\psi) = 30 \%$
- Needed to be disentangled for QGP direct  $J/\psi$  suppression signature
- Also sensitive to b-quark quenching





# Measuring beauty production using $e\mu$ coincidences

Normalized to one central PbPb event  $\bullet$   $e\mu$  channel provides an fp/Np 0.004 independent estimation Charm Bottom 0.004 of b production cross section with large statistics m<sup>†</sup>m m<sup>†</sup>m  $e^{\dagger}e^{\dagger}$  $\sim$  2000 pairs/y 0.002 0.002  $w/p_T > 2.5 \text{ GeV/c}$ em [ALICE-INT-2000-01] ToF **TRD TPC**  $\rightarrow \mu$ Intermediate rapidity coverage of  $e\mu$  pairs  $\mu$  arm Challenging measurement due to background subtraction and rescattering effects

### **Summary & outlook**

- ALICE despite "non-dedicated" has a full heavy flavor physics program
  - large available statistics of both hadronic & semileptonic heavy flavor decays reconstructed w/ high tracking efficiency & resolution and good particle identification
  - heavy flavored hadron production cross sections are assessed w/ small errors
    - Open promising perspectives for the study of heavy quark quenching
    - …and more to come
      - muon pair correlations, a powerful probe of higher orders
      - multi-muon events in pp & pA
      - ALICE b tagging capabilities with soft electrons

Get ready for first pp runs!